
Code Review for Laragigs
This review was done from the git commit cac39143d60543d852c4e52b3f17ebd8cf0ea17f -
this may not match the exact current commit on the source project or the forked version.

Quick note about this code review There are a number of good things in this project that I
like an agree with. Others there's no reason to comment - maybe it's just a difference of
opinion. The goal of this code review is only to point out things that need improvement or
are, in my opinion, a better way to do things. I will try to mention things that are common
best practices in PHP/Laravel projects and differentiate things that are specific to my own
opinion.

This particular project does not have much/any CSS or Javascript. Therefore, this review
will primarily be based on PHP and Laravel code. I'll likely not give opinion on HTML
structure in most places, either.

Remember to apply the feedback to the entire project. Even if the problem or best
practice was only mentioned on one file doesn't mean it doesn't exist in others. It would
be a lot of work to point out each one - and I trust reviewers can pattern match and apply
the feedback globally.

I want to thank the developer for releasing this open source for others to use and for me
to review. You rock.

On to the review content.

PHP Code
composer.json � There are a lot of important sections in the composer file. While each has
a different level of importance, all do matter.

Replace the name of the project. In some instances, this has caused problems with
some automated tools. They may believe the project is something else. But in
general, this is just nice so that if your project source leaks out, it's clear that it's
yours and no one else's. Along those lines, I'd just remove the keywords section and
make description very simple.

https://github.com/morebetterfaster/code-review-example-project

Add the Roave Security Advisories package. This specifically introduces conflicts into
composer for libraries that have vulnerabilities. That is to say, it will stop the
installation of packages that could lead to the application being hacked.
Use the scripts section of the composer file to script out common things that you
might do - like Unit test running or code quality tools. For example, I may write a
script entry for each of tests, phpstan and code sniffer. Then, I'll create a ci script
entry that I run before I merge things - or with github actions - to run all three one
after another - to confirm the project is still up to standards. It helps to reduce the
amount of keystrokes and reduce the memory of individual steps of process I need to
know.
This is a contrary opinion to a lot of the community - but I tend to move
laravel/tinker to require-dev . I don't want people using Tinker in production
systems. If you want to do something, you can query the database with a read-only
user, or you can write a one-time script. The scripts will then be version controlled,
so we'll always know what happened. I've seen too many times where people blow
away production data with Tinker, not realizing what environment they're in.

data.php - not sure what this was for, but it should be removed. Remember, you can put
files anywhere you want, and then just Git stash them for later if you really need to. Do
not commit things that have no place in the project.

routes/api.php � Remove an end point declaration like this - or even comment it out. You
haven't built out your API, so therefore you probably haven't thought through all of the
specifics of what would be returned about a user like this. Sure, it's probably fine, but
why leak information? "Why would that matter" is the clarion call of a lot of unforeseen
security holes. This goes back to removing code that's not in use. Even though you may
not have touched the code in your project, you're responsible for all of it - even if it was
autogenerated.

routes/console.php � Same thing here, remove the inspiring quote command. You're not
using this anyway, right? �� � But seriously, remove code you're not using. I find the
console php file is good for temporary commands - but for longer-lived commands,
you're going to make full console command files anyway.

routes/web.php � Sometimes this feedback is aimed at a specific file or line. That doesn't
mean that's the only place that that happens or is applicable. Please review the entire file
for the pattern identified by the feedback line.

First an opinion � I tend to import only App\Http\Controllers at the top. Then, when you
refer to something like RatioController it's actually going to be
Controllers\RatioController instead - but the benefit is two-fold: less imports and

https://github.com/Roave/SecurityAdvisories

more verbosity without fully qualified names. That's just an opinion thing, though. These
route files can balloon to hundreds of lines, and the imports get pretty unmanageable.

Routes tend to have names. You can see your existing ones by running artisan
route:list - here you'll see you could swap ->get('/login') to -
>get(route('login')) or action="/login" to action="{{ route('login') }}" . This
way if you always use route names, you get two benefits: 1� you can change the path of
urls but not affect your code and 2� you can see where you've tested those routes and
programmed in them - because you can always search for the route name - versus some
combination of regular expression for complex paths that may contain parameters.

You can group things when they share similar things - like middleware, names or prefixes
of the URL. For example:

This could be compressed to something like this:

It technically looks like more lines because of the line wrapping - but it's really only a few.
What this does is the following:

first it applies the auth middleware to all things in the group

Route::get('/listings/create', [ListingController::class, 'create'])-
>middleware('auth');

// Store Listing Data
Route::post('/listings', [ListingController::class, 'store'])-
>middleware('auth');

// Show Edit Form
Route::get('/listings/{listing}/edit', [ListingController::class, 'edit'])-
>middleware('auth');

Route::middleware('auth')
 ->prefix('/listings')
 ->name('listings.')
 ->group(function () {
 Route::get('/create', [ListingController::class, 'create'])
 ->name('create');
 Route::post('/', [ListingController::class, 'store'])
 ->name('store');
 Route::get('/{listing}/edit', [ListingController::class, 'edit'])
 ->name('edit');
 });

then it prefixes the URLs with /listings - so you don't have to type that each time
for the other declarations
it applies the name listings. to everything in the group. So, it adds the declared
name to that. So, when you call ->name('create') it really makes listings.create

Laravel has this concept called resourceful controllers. They are a pattern that is
created/defined for CRUD actions, that is list, single view, create, update, delete. It
handles the form view for create/update - as well as the processing for store/update.
When you have something like this listings controller, it's best practice to use a partial of
a resourceful controller. So, you get in the pattern of using a create() method and a
store() method - and the rest of them - then when you define them in the routes file,
you can do something like Route::resource('listings', ListingsController::class);
- it will use the predictable methods and generate predictable route names. No need to
invent the wheel on each controller then! ��

Finally, it's best to use a Laravel authentication scaffolding like Sanctum for your
authentication. You won't have to re-invent this code like what's required in the
`UserController::authenticate()`` method.

config/app.php � Probably never going to happen, but someone may refer to the APP_NAME
somewhere (like a notification). Change the default value to your company name.

database/seeders/DatabaseSeeder.php - a couple things:

first, don't keep commented code. Git allows you to go into the history and get things
if you need them. However, in this case, I'm guessing it has something to do with only
wanting to run specific seed data at specific times. In that case, make another seed
class, and put it in there, uncommented. Then, do not call that seeder from the main
DatabaseSeeder class - but you can specify it with your artisan command when you
need it: php artisan db:seed --class=MyUniqueSeeder
When you have a relationship like Listing::user() , you can then use the helper
method for() on factories. This way you don't have to know the keys or use the id
property. You can do something like this: Listing::factory(6)->for($user)-
>create() .

app/Providers/AppServiceProvider.php � There is a call to Model::unguard() in the boot()
method. This is a very bad idea. This globally removes some of the protection that
Laravel uses to secure your models and data. Guarded data means that Eloquent will not
allow bulk data sent to methods like create() or update() unless it is specified in the
$fillable property of the model, or - not in the $guarded . That doesn't mean that you
can't set data individually or using the forceFill() method - but those are things you
should reach for as a last resort. Security in depth requires guarded models. I suggest

specifying the fillable properties only. Think about it this way: you maybe want to create a
blog post. You will allow people to bulk submit title and body, so you allow these to be
fillable. You don't want anyone to set the user id field, so that's not listed as something
that is accepted. In your code, though, you probably will build the blog post off of the
user using the blog posts relationship.

app/Models/User.php - when defining a relationship, like listings() , here are two
suggestions:

first, when possible, I suggest type hinting your return types. Some IDE's will be able
to understand that the HasMany comes from the call to $this->hasMany() but to be
more precise and make it more obvious, write this like this:

another thing you'll notice is that there is no user_id referenced either. Laravel
conventions dictate that the relationship property is always the name of the source
class, singular, with id suffixed. So, since you're in the User model, it will always
look for user_id on any HasMany relationships. Only if this column doesn't match
conventions do you need to specify it.

app/Models/Listing.php - a couple items:

just like the previous model, the user_id is redundant in the BelongsTo relationship
of user() - this convention works for all of the relationships
the fillable property is commented out. I bet this has to do with the unguard
command in the app service provider. This property should be defined with the
values it currently has in the comment
the scope should have type hinted parameters to make the queries easier and should
not refer to the request. It's already passed in. Also, the query statement is not going
to generate what I believe is the expected result. Consider this old code:

public function listings(): HasMany
{
 return $this->hasMany(Listing::class);
}

public function scopeFilter($query, array $filters) {
 if($filters['tag'] ?? false) {
 $query->where('tags', 'like', '%' . request('tag') . '%');
 }

 if($filters['search'] ?? false) {
 $query->where('title', 'like', '%' . request('search') . '%')

>orWhere('description' 'like' '%' request('search') '%')

The biggest issue here is that the scope or level of all of the where statements. So, this
will actually create a query that where's on the tags, where's on the title, and then or
where's on the other two. When, in reality, what is probably expected is the first two
wheres but the second should be a nested or considering all of the columns. Perhaps this
is easier to understand with code:

What it could be updated to:

Let's note the following:

first, the Illuminate\Database\Eloquent\Builder is hinted with the incoming
$query parameter. That way we get a nice set of autocomplete in an IDE and
guarantee that we know what we're working with
next, I set the default value to an empty array by default. Likely you'd have a key of
either tags or search - but just in case you have none, or don't even pass in
anything, this will make sure the code doesn't fail.
Using the Arr support helper, we can work with arrays in a unique way. We retrieve
the tags key from the array, if it exists, otherwise it returns null if it's not set. Then,
we already have the variable set with the value if it exists.
In the first query, I'm using a string that has the percent on both sides, and then a
rendered variable. Since these commands are all prepared statements, we don't have

 ->orWhere('description', 'like', '%' . request('search') . '%')
 ->orWhere('tags', 'like', '%' . request('search') . '%');
 }
}

public function scopeFilter(Builder $query, array $filters = []): Builder
{
 if ($tags = Arr::get($filters, 'tags')) {
 $query->where('tags', 'like', "%{$tags}%");
 }

 if ($search = Arr::get($filters, 'search')) {
 $query->where(function (Builder $q) use ($search) {
 $searchTerm = "%{$search}%";
 $q->where('title', 'like', $searchTerm)
 ->orWhere('description', 'like', $searchTerm)
 ->orWhere('tags', 'like', $searchTerm);
 });
 }

 return $query;
}

to worry that we're introducing any weird queries or security holes with this setup.
The same thing is repeated for the search term. Instead, the string is built so it can
be passed in.
Note the nested where statement. Without this, you run into problems in rare
situations. For example, if you passed in a filter of some tags and then a description,
you'd want it to match the tags and then match the description as well. You're 'or'ing
the three fields together as an option that has to match if that key exists. Otherwise,
in the old system, it would find something with the tags - or - it would find something
with the description. It wouldn't be things that are tagged that way AND match the
description - which is really what is wanted.

app/Http/Controllers/ListingController.php - the following feedback:

First, note how this controller has the methods index , show , create , store , edit ,
update , destroy - it basically follows the paradigm of the resourceful controller. So,
the feedback about resourceful controller is basically already ready for this one.
There's a manage method. It's best practice to make resourceful controllers. Then,
with this extra method, move it to the __invoke() method of a new controller called
ListingManageController or something like that. Invokable controllers are great for
one-off things.
index() method:

First, I recommend - and this is mainly an opinion and not necessarily a globally
accepted best practice - but I recommend injecting the Request object and
retrieving data off of that instead. Do not use global methods like request() .
This way, it's clear what request you're working with.
Also, just because something is a GET, doesn't mean that the parameters
shouldn't be validated. There is no validation on the filter request variables. This
should be done, perhaps with a form request, and then you can retrieve the
validated data off of that.
6 is a weird pagination number. But in general, magic numbers and strings are
bad. That is to say, something that means something but is string or integer
constant value can be easily missed. For something like this, a class constant for
pagination number should be generated.

private const PAGINATION_PAGE = 6;

public function index(ListingIndexRequest $request) {
 $listings = Listing::latest()
 ->filter($request->validated())
 ->paginate(self::PAGINATION_PAGE);

store() method:
glad to see validation. However, there are a few things wrong with it - or things
that could be better.

First, make it a form request. Then, you can have your validation in a
separate class, know it's applied, and not have to worry about a larger
controller
second, the requirements of each field should be much stronger. Consider
the data type (string, int), the length (what if someone enters 300 chars, but
your database only handles 255?�, things like that. For example, for title
I'd likely put something like title => ['required', 'string', 'max:255'],
the logo item is not validated. Even though you deal with it differently (using
the ->file() method) you should still validate that it's a file, what type it is,
the size constraints, etc. Especially since it wasn't validated, you could now
upload something like a php file and that is now in the public folder and can
be ran from the internet. Not good. �Validation of images for image mime
types is great. Some even run the image through a GD or Imagick filter and
re-generate it so it's smaller, or at least a known image. If you had an image
with PHP or JS injected, running it through a conversion would remove that.)

you should always get the current user off of the request. `$formFields['user_id']
� $request→user()→id.
Instead of that, though, I would suggest creating the listing directly from the user
- so you don't have to unprotect or fill the user id specially. Do $request-
>user()->listings()->create($formFields); and this won't require you to
specify the user_id at all. Eloquent just handles that for you.
on redirects, if you have routes named, you could do something like return
redirect(route('my-route-name.here')); and you now don't have to ever
search for / - you can find where routes are in use by their name.

update() feedback here:
first of all, glad to see some authorization logic at top. If you use a form request,
you can put that in the authorize() method. In addition, if you create policies,
that could be done automatically from the controller declaration.
there is code duplication between store and update � I think that could be
removed, or when the form requests are created, that will get rid of a lot of that
anyway

 return view('listings.index', [
 'listings' => $listings,
])
}

on update, what about the old image? do they all just say around forever? or
should it be removed when there is an updated image?

app/Http/Controllers/UserController.php - there isn't really much to say about this controller.
It's a lot of re-invented wheels. Instead of commenting on this, it'd be best just to use
something like Laravel's Auth scaffolding like Sanctum. It writes all of this in a way that's
really robust, tested, and still configurable.

View/Blade
All of this feedback is based on the folder structure resources/views and won't have that
prefix below.

components/flash-message.blade.php � I like the idea that this is componentized. However,
remember that there are more than just one type of flash message. There are message
from your app, but Laravel tends to use the paradigm of success and error as well. So
you might want to check additional session keys and generate output based on them as
well.

components/layout.blade.php - feedback for this:

I know this is a work in progress, but I'd highly recommend importing javascript like
Alpine and CSS like font awesome with Laravel Mix (or Vite) as soon as possible.
Then, you will benefit on deploy from things like tree shaking and removal of css/js
not in use.
Generally, you want to define a section called title for your titles, and then can
default back to a known one. For example:

This will display the default title when no title is set. Otherwise, on your other views - say
like login or listings, you can do @section('title', 'Log in') and it will make that the
title tag.

again, use named routes when you can. Don't hard-code something like
/listings/manage because you may want to change it later, too.
quality IDE's should point out problems in your HTML code as well. For example, this
line has duplicate class attributes, so the result is often non-deterministic:

Something simple - but when using a copyright year, you can use the current date
from something like Carbon::now()->format('Y') or something even as simple as
date('Y')

<title>@yield('title', 'LaraGigs | Find Laravel...')</title>

components/listing-card.blade.php Another benefit for using named routes is you can
replace the a tag's href attribute with a simpler output. It may not be 'simpler' but it
actually is. As it is, you have to know that the key and the bound values are ->id on the
$listing variable. Instead you could do this href="{{ route('listings.show',
['listing' => $listing]) }}" - while that may look longer, it actually is better. It's a
named route, so you always know where you've implemented that data. You also don't
have to know the key is id - under the hood, laravel calls ->getKey() which allows you
to abstract that. All you know is that it takes a listing. That way the url could be
/listings/28 now - but in the future it could be something like /module-
jobs/listings/private-view/28/show or whatever - and you'd never have to change this
blade file.

users/register.blade.php - a couple things:

never NEVER output a password, even if authentication failed. Do not use
old('password') ever. Those always need to be retyped.
A lot of times the CSS class is added/changed on error. Remember, you can use
something like @class(['error-class' => $errors->has('email'), 'form-input')
for example. What that does is - depending on if there is an error with email, it will
add the error-class - but it will always add the form-input . This directive takes
care of rendering the proper classes and doing proper spacing, etc.

partials/_hero.blade.php � Do not use inline style. Instead, add the background image to
your CSS and use an ID or class to target the element.

partials/_search.blade.php � Generally, you can repopulate the search term in search boxes.
Most often, search is something like q or something predictable - but you could even
pass it in as a variable to the include for the partial if need be.

listings/edit.blade.php - it looks like this is a lot of copy/paste from the create. You could
make a partial for the form and include it in both places. Then, when you want to set the
value, you can do this: value="{{ old('title', $listing->title ?? null) }}" which
works like this: First, attempt to use the old submitted value - so when you have a
validation error, it will put everything back so they can fix it. Next, if there is no old
submission, render our default value. in cases where there is a $listing variable (that is,
on edit), use the title attribute. In cases where there is no $listing variable (like
create), null coalesce to the default of old() which is null.

listings/manage.blade.php - just as UX thing here: especially since there are no soft deletes
on the Listing model, it's best to put some sort of dialog or confirm on the delete form.
Otherwise people (or a cat) could click the button and that listing is gone forever.

Automated Testing
Automated testing is sometimes called unit testing. These names can get confusing
because unit tests are a form of automated testing. Oh boy. But, let’s just touch on this
briefly.

Automated testing helps reduce bugs in new code and prevent regressions from new
features and refactoring. In my projects, I’ve got an extensive test suite that allows me to
upgrade packages with little fear. I know that I will run my tests and if they all still pass,
the level of coverage over all the functionality I have will let me believe that there are no
new bugs.

Unit tests are not a replacement for executing the code by hand, however. They should
be used in tandem. Sometimes, automated tests are considered to be a form of
documentation. When you name the tests appropriately, you can scan through the test
suite and get an idea what all of the methods under test do and what you’d expect to see
when they’re exercised in certain ways.

There are a number of types of unit tests or automated tests - let me break them down
into the main 3.

Unit test: the basic test - this is the smallest unit of code that needs to be tested. It can
do one thing and should always have one output. For example, imagine a scenario where
you have a model that has a method called fullName() - it builds the first name, a space,
and the last name as the output. You may write a unit test that checks what happens
when both fields are blank, what if just the first name is blank, what about just the
second, what about if both are filled. There’s no need to interact with any other part of
the system and the logic is relatively straight forward to test. You can use PHPUnit in
PHP, Chai/Mocha or Jest in JS.

Integration test: this is when you want to integrate at least one other block of code or
functionality of your app. In some cases, this means testing how various classes interact
with each other. In most cases, however, I take this to mean that it’s different levels of the
app: I want to test how my database interacts with this PHP code. But I’m not exercising a
full end point of the application. For example, I might have a repository that retrieves only
odd numbered streets of address objects. I may seed in a whole data set in my test into
my database, then initialize the repository and call that retrieval method. I want to test
that only odd streets are retrieved. That way when that code is used in a full
implementation of the application, I know it’s already been tested. Do not use the same
database as you use for development as you might for integration tests. You can use
PHPUnit in PHP, Chai/Mocha or Jest in JS.

End to end test: These are sometimes known also as feature tests. This is basically taking
an expected visitor state, an expected user input, and processing it through an HTTP
request, and measuring the expected output and system by products. For example, you
might create an authenticated user, and send in a string that is 100k characters long to
your blog entry end point, and expect and test that it returns a 422 error, a useful
message about line lengths, and that no new database entries have been made. You can
use PHPUnit in PHP, or Cypress or Selenium to exercise browsers.

End to end tests are generally where I focus when it comes to adding tests to a legacy
system. Build the scaffolding around the functionality and then slowly get more detailed.
Then, as you replace your functionality with new code, you make sure the tests still pass.

You might think then you should only create E2E tests - but that’s not the case. Generally,
they take much longer to run and set up. So, you’ll find that a healthy mix of different
types will likely cover your code base appropriately in reference to the time/expense
required to create & run them.

Project Specific Testing Feedback
phpunit.xml � Here comes a lot of personal opinion. But, first, I'd say you should add the
stopOnFailure="true" attribute to the phpunit element. This stops the tests on the first
failure. My logic is such: if a test fails, you probably want to work on that - why have to hit
ctrl-c to quit the tests? In addition, if one test fails, likely others will 'false fail' based on
the reason for the first test failure. That is to say, if you forgot to do authentication
correctly on an end point, why do you need to test all 5 ways of using that end point? The
first failed, what do additional failed tests actually give you?

Second thing: use null as a queue connection. This means no queued jobs will run. Your
code tests can check if events have fired and are wired up, but when you test that all the
listeners have ran in queue, you're running far more than just the end point you're trying
to test. You can get higher quality coverage by making your tests more targeted by
launching listeners (after you've tested and verified they're wired up) manually.

Finally, there's a whole conversation on what feature vs unit tests are. This has been
detailed later. I tend to use three: Feature, Integration and Unit. Your PHPUnit.xml file will
have three sections should you adopt this practice. The most important thing is to have
actual tests, no matter what you're doing.

tests/Feature/ExampleTest.php � I would remove this. This is just one more thing that has to
run that could possibly fail some day. Remove code you don't need - especially test code.
This helps in so many ways (code review, speed, IDE analysis, code analysis, etc). It also

reduces mental load. As you build out more complex projects, small things like these all
add up.

Misc and Project Details
.styleci.yml � Mostly a personal opinion: Generally, if you're not going to use a particular
service, you may want to remove the configuration. These can always be added later.
Other developers assume you agree with, promote and have configured services that you
retain configuration for. So, if it's not in use, remove it. Then, if you want to integrate later,
you can always add it back / or generate your own configuration from the source of the
integration.

Anyway, I prefer the tool PHP_Codesniffer for style stuff, and Larastan for code quality.
While I think there are some options to run StyleCI locally, it's my opinion that the
programmer should be responsible for applying style, not having that ran on a third
party's platform committing to code you've already approved as your own.

README.md - a couple things here:

first, I like the image that is used for the top of the readme. However, it doesn't have
to be in the public folder - unless it's being used in other places on the internet. If
it's just for this repo, which I assume it is, you can put it in a top level folder like art
or something. It doesn't need to be available on the web.
make sure to check spelling. You can enable a spell checker in your IDE usually.
Normally those understand camelCase as well, so they'll let you know about spelling
mistakes even in your variables. This example comes from the misspelled word
nessesary . (which should be necessary)
the instructions to add the credentials for MySQL to .env.example are wrong. Well,
technically they could be right - but ... So the point is, don't add credentials into your
example file unless they're very specifically not secrets. In this case, I can see there
being confusion on whether you have to do that for production as well. We also know
that people tend to re-use passwords, so I wouldn't suggest anyone put a password
in the example file - unless they know what they're doing. A lot of times, in projects I
work on, I will create a local database but I'll specifically point out that I've used a
simple password like password - so it's obvious that I can 'share' that 'secret'

_laragigs_theme � I assume this was for generating the layout of the project before the
programming started. In cases like this, I would not include this with the main project. As
another programmer, I was confused and thought this applied to the system in some way.
Repos are cheap/free, so create a different git repo and store this in there. Keep the
design assets separate from code - and only import imagery and assets that you need.

Misc
This section is just miscellaneous things that don't necessarily apply to a single file.

Definitely consider something like PHP_Codesniffer to validate and apply your code
standards of choice. When you have multiple developers - or even for yourself - this
can definitely help. A lot of the auto-formatting allows you to just write code, save it,
and watch it transform into properly formatted code. This works automatically like
95% of the time. But you need to sometimes still apply the changes.
Consider strict type declarations as you increase the complexity. You can do this
with declare(strict_types=1); at the top of your files. This tells PHP not to type-
juggle. You don't need to apply this now, and it should probably be done on a file-by-
file pace, but it has saved me from a lot of bugs in the past. It also makes it 'slightly
harder' if you're used to the loose-typing of PHP.
Use ide-helper - this will generate all kinds of useful things for your IDE � including
properties and methods on your models, facade auto complete, etc. You're struggling
needlessly if you're not using this tool.
When you have a license like MIT in your composer.json file, it's a good idea to also
generate a LICENSE file in the root of your project. That will alert tools like Github
what license your whole project is. In fact, you can create the file through their
interface and it'll give you a number of templates - including the MIT license - to add.
Things I might consider adding / doing better. I know this was a quick project and
may be a work in progress:

Add policies. This determines the permissions that people have to do things.
Then, you can add the checks as middleware or directly in the constructor of
resourceful controllers.

https://github.com/barryvdh/laravel-ide-helper

